* equal contribution authors. alphabetical authorship.
Papers
A. Ganesh, M. Haghifam , T. Steinke, A. Thakurta ‘‘ Faster Differentially Private Convex Optimization via Second-Order Methods’’, Advances in Neural Information Processing Systems 37 (NeurIPS), 2023 [paper].
A. Ganesh, M. Haghifam , M. Nasr, S. Oh, T. Steinke, O. Thakkar, A. Thakurta, L. Wang ‘‘ Why Is Public Pretraining Necessary for Private Model Training?’’, International Conference on Machine Learning (ICML), 2023 [paper].
M. Haghifam* , B. Rodriguez-Galvez*, R. Thobaben, M. Skoglund, D. M. Roy, G. K. Dziugaite ‘‘Limitations of Information-Theoretic Generalization Bounds for Gradient Descent Methods in Stochastic Convex Optimization’’, International Conference on Algorithmic Learning Theory 34 (ALT), 2023 [paper].
M. Hoseinpour, M. Hoseinpour, M. Haghifam , M. R. Haghifam ‘‘Privacy-Preserving and Approximately Truthful Local Electricity Markets: A Differentially Private VCG Mechanism’’, IEEE Transactions on Smart Grid, 2023 [paper].
M. Haghifam , S. Moran, D. M. Roy, G. K. Dziugaite, ‘‘Understanding Generalization via Leave-One-Out Conditional Mutual Information’’, International Symposium on Information Theory, (ISIT), 2022 [paper].
M.Haghifam* , M. N. Krishnan*, A. Khisti, X. Zhu, W. Dan, J. Apostolopoulos, ‘‘On Streaming Codes With Unequal Error Protection’’, IEEE Journal on Selected Areas in Information Theory, 2021
[paper].
M. Haghifam , V. Y. F. Tan, A. Khisti, ‘‘Sequential Classification with Empirically Observed Statistics’’, IEEE Transactions on Information Theory, 2021
[paper].
M. Haghifam , G. K. Dziugaite, S. Moran, D. M. Roy, ‘‘Towards a Unified Information–Theoretic Framework for Generalization’’, Advances in Neural Information Processing Systems 35 (NeurIPS), 2021 (Spotlight, <3% of submissions)
[paper].
(Also Presented as a workshop paper at ICML-21 Workshop on Information-Theoretic Methods for Rigorous, Responsible, and Reliable Machine Learning.)
G. Neu, G. K. Dziugaite, M. Haghifam , D. M. Roy , ‘‘Information-Theoretic Generalization Bounds for Stochastic Gradient Descent’’, Annual Conference on Learning Theory 34 (COLT), 2021
[paper].
M. Haghifam , J. Negrea, A. Khisti, D. M. Roy , G. K. Dziugaite, ‘‘Sharpened Generalization Bounds based on Conditional Mutual Information and an Application to Noisy, Iterative Algorithms’’, Advances in Neural Information Processing Systems 34 (NeurIPS), 2020
[paper].
J. Negrea*, M. Haghifam* , G. K. Dziugaite, A. Khisti, D. M. Roy, ‘‘Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates’’, Advances in Neural Information Processing Systems 33 (NeurIPS), 2019
[paper].
(Also Presented as a workshop paper at ICML-19 Workshop in Understanding and Improving Generalization in Deep Learning.)
M. Haghifam , M. Robat Mili, B. Makki, M. Nasiri-Kenari, T. Svensson, ‘‘Joint Sum Rate And Error Probability Optimization: Finite Blocklength Analysis’’, IEEE Wireless Communications Letters, 2017
[paper].
Workshop Papers
M. Haghifam , V. Y. F. Tan, and A. Khisti, ‘‘Sequential Classification with Empirically Observed Statistics’’, IEEE Information Theory Workshop 2019, Visby, Gotland, Sweden
[paper].
M. Haghifam , A. Badr, A. Khisti, X. Zhu, W. Dan and J. Apostolopoulos, ‘‘Streaming Codes with Unequal Error Protection against Burst Losses’’, The 29th Biennial Symposium on Communications (BSC 2018)
[paper].
M. Haghifam , B. Makki, M. Nasiri-Kenari, T. Svensson, ‘‘On joint information and energy transfer in relay networks with an imperfect power amplifier’’, 27th Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016
[paper].
M. Haghifam , M. R. Haghifam, B. Safari Chabook, ‘‘State estimation in electric distribution networks in presence of distributed generation using the PMUs’’, CIRED 2012, Lisbon, Portugal
[paper]
|